Author:
Gao Guanjun,Li Yong,Wang Zhaodong,Di Hongshuang,Li Jiadong,Xu Guangming
Abstract
The quenching rate of Al–Mg–Si alloys during solution treatment is an important parameter for the automotive industry. In this work, the effect of the different quenching rates on the microstructures, mechanical properties, and paint bake-hardening response of Al–Mg–Si sheets was studied. Large dimples form on the fracture surface of a sample at a quenching rate of 0.01 °C/s. When the quenching rate increased to 58.9 °C/s, the dimples became smaller. The recrystallized grains and textures were slightly affected by quenching rates beyond 1.9 °C/s. Thus, higher r values of the samples were achieved with slower quenching rates. Furthermore, only the Al(FeMn)SiCr insoluble phases were observed in samples with a rapid quenching rate. Sufficient solute atoms and vacancies resulted in the improvement of the precipitation kinetics and paint bake-hardening capacity for Al–Mg–Si sheets at rapid rates. With a decrease in the quenching rate, the formation of the rod-like coarse β′ phases consumed many solute atoms and vacancies, leading to the deterioration of the paint bake-hardening capacity. This study provides a critical reference on quenching rates for industrial practices, so that good mechanical properties can be achieved using precision control of the quenching process.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献