Compounds with Epoxy Resins and Phase Change Materials for Storage in Solar Applications

Author:

Álvarez Feijoo Miguel ÁngelORCID,Arce Fariña María ElenaORCID,Suárez-García Andrés,González-Peña David,Díez-Mediavilla Montserrat

Abstract

Composite materials have great potential for growth due to their excellent properties and their multiple applications. The study of the thermal properties of the new composites resulting from the combination of epoxy resin and phase change materials (PCM), as well as thickening agents and thermally conductive compounds, was the objective of this work. For this purpose, different samples were manufactured by combining epoxy resins, organic PCMs (paraffins), and aluminum particles. Several properties were analyzed: thermal behavior (by differential scanning calorimetry technique), hardness, etc. To carry out this analysis, parameters of PCM quantity and metallic particles in the composition were varied. The results showed that the epoxy resin acted as a matrix containing the rest of the components and encapsulating the PCM. The organic PCM showed reversibility when subjected to multiple cycles. The enthalpy of the organic PCM–resin compound varied linearly according to the PCM content in the sample. For the content of this material in the samples to reach up to 40%, the use of thickening agents was necessary. The use of metallic particles improved the conductivity of the composites even while maintaining a low percentage by weight of metallic particles. Thermal simulations of the composite in bottom-coating a photovoltaic panel estimated a reduction of several degrees Celsius, showing the potential use of the PCM–epoxy resin for improving the energy production of such panels.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3