Affiliation:
1. College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
2. College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
Abstract
Natural secondary Carya dabieshanensis forests comprise the natural wealth of the Dabie Mountains, which maintain the ecological balance of this region and enhance the incomes of farmers. However, forest ecosystems are being increasingly challenged due to increasing long-term anthropogenic development and management. Elucidating the impacts of management intensity and duration on the diversity and stability of vegetation communities in natural secondary Carya dabieshanensis forests is of great significance toward achieving sustainable forest management. For this study, we compared the effects of three forest management intensities (no management (CK), extensive management (EM), and intensive management (IM)), and five management durations (0, 3, 8, 15, and 20 y) on species diversity and the stability of vegetation communities (trees, shrubs, and herbaceous layers) of a Carya dabieshanensis forest. Our results revealed that the diversity of the vegetation communities continued to decline following the onset of management activities. The diversity, dominance, evenness, and richness indices of the vegetation communities decreased by 53.37%–62.77%, 46.04%–59.17%, 32.58%–53.55%, and 50.18%–51.30%, respectively, after 20 y of forest management. Intensive management translated to species diversity loss more so than extensive management. All vegetation communities of the forest stands under study were generally unstable; however, the stability they did have was not at risk under greater management intensity and duration, and neither did greater species diversity enhance it. This study provides new evidence to support the non-synchronicity of species diversity and community stability in forest resident vegetation communities. Since the species diversity and structural composition of tree layers have a positive effect on community stability, so we suggest that both extensive and intensive forest lands need to retain or replant more tree species other than Carya dabieshanensis.
Funder
Natural Science Foundation of Anhui Province
Key Research Program of Anhui Provincial Department of Education
Special Major Science and Technology Project of Anhui Province