Vehicle Target Recognition in SAR Images with Complex Scenes Based on Mixed Attention Mechanism

Author:

Tang Tao1,Cui Yuting2,Feng Rui3,Xiang Deliang3ORCID

Affiliation:

1. College of Electronics Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Ceyear Technologies Co., Ltd., Qingdao 266555, China

3. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China

Abstract

With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in existing SAR image target recognition focuses on spatial and channel information but lacks research on the relationship and recognition mechanism between spatial and channel information. In response to this issue, this article proposes a hybrid attention module and introduces a Mixed Attention (MA) mechanism module in the MobileNetV2 network. The proposed MA mechanism fully considers the comprehensive calculation of spatial attention (SPA), channel attention (CHA), and coordinated attention (CA). It can input feature maps for comprehensive weighting to enhance the features of the regions of interest, in order to improve the recognition rate of vehicle targets in SAR images.The superiority of our algorithm was verified through experiments on the MSTAR dataset.

Funder

Natural Science Foundation of Hunan province, China

Publisher

MDPI AG

Reference31 articles.

1. SAR Target Recognition via Joint Sparse Representation of Monogenic Signal;Dong;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2015

2. SAR Target Configuration Recognition Using Tensor Global and Local Discriminant Embedding;Huang;IEEE Geosci. Remote Sens. Lett.,2016

3. Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review;Gill;IEEE Access,2016

4. A Gaussian Process Classification and Target Recognition Algorithm for SAR Images;Yang;Sci. Program.,2022

5. Model-driven Automatic Target Recognition of SAR Images with Part-level Reasoning;Ding;Optik,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative performances of CNN models for SAR Targets classification;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3