Enhancing Network Intrusion Detection: A Genetic Programming Symbolic Classifier Approach

Author:

Anđelić Nikola1ORCID,Baressi Šegota Sandi1ORCID

Affiliation:

1. Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

Abstract

This investigation underscores the paramount imperative of discerning network intrusions as a pivotal measure to fortify digital systems and shield sensitive data from unauthorized access, manipulation, and potential compromise. The principal aim of this study is to leverage a publicly available dataset, employing a Genetic Programming Symbolic Classifier (GPSC) to derive symbolic expressions (SEs) endowed with the capacity for exceedingly precise network intrusion detection. In order to augment the classification precision of the SEs, a pioneering Random Hyperparameter Value Search (RHVS) methodology was conceptualized and implemented to discern the optimal combination of GPSC hyperparameter values. The GPSC underwent training via a robust five-fold cross-validation regimen, mitigating class imbalances within the initial dataset through the application of diverse oversampling techniques, thereby engendering balanced dataset iterations. Subsequent to the acquisition of SEs, the identification of the optimal set ensued, predicated upon metrics inclusive of accuracy, area under the receiver operating characteristics curve, precision, recall, and F1-score. The selected SEs were subsequently subjected to rigorous testing on the original imbalanced dataset. The empirical findings of this research underscore the efficacy of the proposed methodology, with the derived symbolic expressions attaining an impressive classification accuracy of 0.9945. If the accuracy achieved in this research is compared to the average state-of-the-art accuracy, the accuracy obtained in this research represents the improvement of approximately 3.78%. In summation, this investigation contributes salient insights into the efficacious deployment of GPSC and RHVS for the meticulous detection of network intrusions, thereby accentuating the potential for the establishment of resilient cybersecurity defenses.

Funder

CEEPUS network

European Regional Development Fund

Erasmus+ project WICT

University of Rijeka Scientific

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3