Algorithm-Based Data Generation (ADG) Engine for Dual-Mode User Behavioral Data Analytics

Author:

Sulayman Iman I. M. Abu12ORCID,Voege Peter1ORCID,Ouda Abdelkader1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Faculty of Engineering, Western University, London, ON N6A 5B9, Canada

2. Electrical Engineering Department, Engineering College, Main Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

The increasing significance of data analytics in modern information analysis is underpinned by vast amounts of user data. However, it is only feasible to amass sufficient data for various tasks in specific data-gathering contexts that either have limited security information or are associated with older applications. There are numerous scenarios where a domain is too new, too specialized, too secure, or data are too sparsely available to adequately support data analytics endeavors. In such cases, synthetic data generation becomes necessary to facilitate further analysis. To address this challenge, we have developed an Algorithm-based Data Generation (ADG) Engine that enables data generation without the need for initial data, relying instead on user behavior patterns, including both normal and abnormal behavior. The ADG Engine uses a structured database system to keep track of users across different types of activity. It then uses all of this information to make the generated data as real as possible. Our efforts are particularly focused on data analytics, achieved by generating abnormalities within the data and allowing users to customize the generation of normal and abnormal data ratios. In situations where obtaining additional data through conventional means would be impractical or impossible, especially in the case of specific characteristics like anomaly percentages, algorithmically generated datasets provide a viable alternative. In this paper, we introduce the ADG Engine, which can create coherent datasets for multiple users engaged in different activities and across various platforms, entirely from scratch. The ADG Engine incorporates normal and abnormal ratios within each data platform through the application of core algorithms for time-based and numeric-based anomaly generation. The resulting abnormal percentage is compared against the expected values and ranges from 0.13 to 0.17 abnormal data instances in each column. Along with the normal/abnormal ratio, the results strongly suggest that the ADG Engine has successfully completed its primary task.

Funder

Natural Sciences and Engineering Research Council of Canada

Taif University Researchers Supporting Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3