IoT-Based SHM Using Digital Twins for Interoperable and Scalable Decentralized Smart Sensing Systems

Author:

Chen Jiahang1ORCID,Reitz Jan1,Richstein Rebecca2ORCID,Schröder Kai-Uwe2ORCID,Roßmann Jürgen1ORCID

Affiliation:

1. Institute for Man-Machine Interaction, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

2. Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Wüllnerstraße 7, 52062 Aachen, Germany

Abstract

Advancing digitalization is reaching the realm of lightweight construction and structural–mechanical components. Through the synergistic combination of distributed sensors and intelligent evaluation algorithms, traditional structures evolve into smart sensing systems. In this context, Structural Health Monitoring (SHM) plays a key role in managing potential risks to human safety and environmental integrity due to structural failures by providing analysis, localization, and records of the structure’s loading and damaging conditions. The establishment of networks between sensors and data-processing units via Internet of Things (IoT) technologies is an elementary prerequisite for the integration of SHM into smart sensing systems. However, this integrating of SHM faces significant restrictions due to scalability challenges of smart sensing systems and IoT-specific issues, including communication security and interoperability. To address the issue, this paper presents a comprehensive methodological framework aimed at facilitating the scalable integration of objects ranging from components via systems to clusters into SHM systems. Furthermore, we detail a prototypical implementation of the conceptually developed framework, demonstrating a structural component and its corresponding Digital Twin. Here, real-time capable deformation and strain-based monitoring of the structure are achieved, showcasing the practical applicability of the proposed framework.

Funder

European Regional Development Fund

state of North Rhein–Westphalia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3