Recognition of House Structures from Complicated Electrical Plan Images

Author:

Tanaka Fukuharu1ORCID,Mizumoto Teruhiro12ORCID,Yamaguchi Hirozumi1ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan

2. Chiba Institute of Technology, Narashino 275-0016, Japan

Abstract

Advances in image analysis and deep learning technologies have expanded the use of floor plans, traditionally used for sales and rentals, to include 3D reconstruction and automated design. However, a typical floor plan does not provide detailed information, such as the type and number of outlets and locations affecting the placement of furniture and appliances. Electrical plans, providing details on electrical installations, are intricate due to overlapping symbols and lines and remain unutilized as house manufacturers independently manage them. This paper proposes an analysis method that extracts the house structure, room semantics, connectivities, and specifics of wall and ceiling sockets from electrical plans, achieving robustness to noise and overlaps by leveraging the unique features of symbols and lines. The experiments using 544 electrical plans show that our method achieved better accuracy (+3.6 pt) for recognizing room structures than the state-of-the-art method, 87.2% in identifying room semantics and 97.7% in detecting sockets.

Funder

JST, CREST

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3