Enhanced Lightweight YOLOX for Small Object Wildfire Detection in UAV Imagery

Author:

Luan Tian1ORCID,Zhou Shixiong1ORCID,Zhang Guokang1,Song Zechun1,Wu Jiahui1,Pan Weijun1

Affiliation:

1. College of Air Traffic Managment, Civil Aviation Flight University of China, Guanghan 618307, China

Abstract

Target detection technology based on unmanned aerial vehicle (UAV)-derived aerial imagery has been widely applied in the field of forest fire patrol and rescue. However, due to the specificity of UAV platforms, there are still significant issues to be resolved such as severe omission, low detection accuracy, and poor early warning effectiveness. In light of these issues, this paper proposes an improved YOLOX network for the rapid detection of forest fires in images captured by UAVs. Firstly, to enhance the network’s feature-extraction capability in complex fire environments, a multi-level-feature-extraction structure, CSP-ML, is designed to improve the algorithm’s detection accuracy for small-target fire areas. Additionally, a CBAM attention mechanism is embedded in the neck network to reduce interference caused by background noise and irrelevant information. Secondly, an adaptive-feature-extraction module is introduced in the YOLOX network’s feature fusion part to prevent the loss of important feature information during the fusion process, thus enhancing the network’s feature-learning capability. Lastly, the CIoU loss function is used to replace the original loss function, to address issues such as excessive optimization of negative samples and poor gradient-descent direction, thereby strengthening the network’s effective recognition of positive samples. Experimental results show that the improved YOLOX network has better detection performance, with mAP@50 and mAP@50_95 increasing by 6.4% and 2.17%, respectively, compared to the traditional YOLOX network. In multi-target flame and small-target flame scenarios, the improved YOLO model achieved a mAP of 96.3%, outperforming deep learning algorithms such as FasterRCNN, SSD, and YOLOv5 by 33.5%, 7.7%, and 7%, respectively. It has a lower omission rate and higher detection accuracy, and it is capable of handling small-target detection tasks in complex fire environments. This can provide support for UAV patrol and rescue applications from a high-altitude perspective.

Funder

the Program of China Sichuan Science and Technology

Publisher

MDPI AG

Reference48 articles.

1. Fire detection: A new approach based on a low cost CCD camera in the near infrared;Sentenac;Process Saf. Environ. Prot.,2007

2. Fire detection based on vision sensor and support vector machines;Ko;Fire Saf. J.,2009

3. Automatic fire pixel detection using image processing: A comparative analysis of rule-based and machine learning-based methods;Toulouse;Signal Image Video Process.,2016

4. Alves, J., Soares, C., Torres, J.M., Sobral, P., and Moreira, R.S. (2019). New Knowledge in Information Systems and Technologies: Volume 2, Springer International Publishing.

5. Fire detection system using machine learning;Arul;J. Phys. Conf. Ser.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3