Improved Stability and Manufacturability of Nucleocapsid Antigens for SARS-CoV2 Diagnostics through Protein Engineering

Author:

Shukla Esha1ORCID,Choudhury Lipsa1ORCID,Rastogi Saurabh1,Chawla Arshmeet1,Bhattacharya Sanghati2,Kaushik Umesh3,Mittal Manan3,Rathore Anurag Singh2ORCID,Pandey Gaurav1ORCID

Affiliation:

1. Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India

2. Department of Chemical Engineering, Indian Institute of Technology New Delhi, Hauz Khas, New Delhi 110016, India

3. Medsource Ozone Biomedicals Pvt. Ltd., Parmeshwari Colony, Faridabad 121003, India

Abstract

The COVID-19 pandemic has had a significant impact on human health management. A rapid diagnosis of SARS-CoV2 at the point-of-care (POC) is critical to prevent disease spread. As a POC device for remote settings, a LFIA should not require cold-chain maintenance and should be kept at normal temperatures. Antigen stability can be enhanced by addressing instability issues when dealing with fragile components, such as proteinaceous capture antigens. This study used immunologically guided protein engineering to enhance the capture nucleocapsid (NP) antigen stability of SARS-CoV2. A search of the IEDB database revealed that antibodies detecting epitopes are almost uniformly distributed over NP1-419. In contrast, N-terminal stretches of NP1-419 are theoretically more unstable than C-terminal stretches. We identified NP250-365 as a NP stretch with a low instability index and B-cell epitopes. Apart from NP1-419, two other variants (NP121-419 and NP250-365) were cloned, expressed, and purified. The degradation pattern of the proteins was observed on SDS-PAGE after three days of stability studies at −20 °C, 4 °C, and 37 °C. NP1-419 was the most degraded while NP250-365 exhibited the least degradation. Also, NP1-419, NP250-365, and NP121-419 reacted with purified antibodies from COVID-19 patient serum. Our results suggest that NP250-365 may be used as a stable capture antigen in LFIA devices to detect COVID-19.

Funder

BIRAC

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3