Comparison of the Accuracy of Epistasis and Haplotype Models for Genomic Prediction of Seven Human Phenotypes

Author:

Liang Zuoxiang1ORCID,Prakapenka Dzianis1ORCID,Da Yang1

Affiliation:

1. Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA

Abstract

The accuracy of predicting seven human phenotypes of 3657–7564 individuals using global epistasis effects was evaluated and compared to the accuracy of haplotype genomic prediction using 380,705 SNPs and 10-fold cross-validation studies. The seven human phenotypes were the normality transformed high density lipoproteins (HDL), low density lipoproteins (LDL), total cholesterol (TC), triglycerides (TG), weight (WT), and the original phenotypic observations of height (HTo) and body mass index (BMIo). Fourth-order epistasis effects virtually had no contribution to the phenotypic variances, and third-order epistasis effects did not affect the prediction accuracy. Without haplotype effects in the prediction model, pairwise epistasis effects improved the prediction accuracy over the SNP models for six traits, with accuracy increases of 2.41%, 3.85%, 0.70%, 0.97%, 0.62% and 0.93% for HDL, LDL, TC, HTo, WT and BMIo respectively. However, none of the epistasis models had higher prediction accuracy than the haplotype models we previously reported. The epistasis model for TG decreased the prediction accuracy by 2.35% relative to the accuracy of the SNP model. The integrated models with epistasis and haplotype effects had slightly higher prediction accuracy than the haplotype models for two traits, HDL and BMIo. These two traits were the only traits where additive × dominance effects increased the prediction accuracy. These results indicated that haplotype effects containing local high-order epistasis effects had a tendency to be more important than global pairwise epistasis effects for the seven human phenotypes, and that the genetic mechanism of HDL and BMIo was more complex than that of the other traits.

Funder

National Institutes of Health’s National Human Genome Research Institute

USDA National Institute of Food and Agriculture

Agricultural Experiment Station at the University of Minnesota

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3