Exploring the Potential Link between Acute Central Serous Chorioretinopathy and Trimethylamine N-Oxide, Phoenixin, Spexin, and Alarin Molecules

Author:

Kaya Mehmet Kaan1ORCID,Arslan Sermal1

Affiliation:

1. Universaleye Clinic, Elazig 23040, Turkey

Abstract

Purpose: Acute central serous chorioretinopathy (ACSCR) is a condition characterized by decreased visual acuity, macular thickening, and edema under the retinal layer. Although the underlying mechanisms of the disease are not fully understood, oxidative stress is considered to be a critical risk factor. The aim of this study was to shed light on the pathophysiology of ACSCR by investigating the levels of circulating trimethylamine N-oxide (TMAO), phoenixin (PNX), alarin (ALA), and spexin (SPX) molecules in ACSCR patients. Methods: The study included 30 ACSCR patients and 30 healthy individuals as controls. ACSCR was diagnosed using optical coherence tomography (OCT) imaging. Five mL blood samples were collected from all participants following overnight fasting. The levels of TMAO, PNX, ALA, and SPX in the blood samples were measured using the ELISA method. Results: Visual acuity was found to be significantly reduced in ACSCR patients compared to the control group (<0.05), while macular thickness was increased (<0.05). Furthermore, TMAO, PNX, and ALA levels were significantly higher in ACSCR patients (<0.05), while SPX levels were significantly lower compared to the control group (<0.05). In ACSCR patients, there was a positive correlation between macular thickness and TMAO, PNX, and ALA; there was, however, a negative correlation with SPX. Additionally, visual acuity was negatively correlated with TMAO, PNX, and ALA, while SPX levels decreased as visual acuity decreased. Conclusions: These results demonstrate a correlation between the TMAO, PNX, ALA, and SPX levels of ACSCR patients and their visual acuity and macular thickness. Given the role of these molecules in ACSCR’s pathophysiology, they hold promise as potential diagnostic, therapeutic, and follow-up markers in the future.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3