Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores

Author:

Chang Chih-ChangORCID

Abstract

Ion current rectification (ICR) phenomena in asymmetric nanofluidic structures, such as conical-shaped nanopores and funnel-shaped nanochannels, have been widely investigated in recent decades. To date, the effect of asymmetric nanofluidic structures on electrokinetic power generation driven by the streaming current/potential has not been explored. Accordingly, this study employed a numerical model based on the Poisson equation, Nernst–Planck equation, and Navier–Stokes equation to investigate the electrokinetic energy conversion (EKEC) in a conical nanopore while considering hydrodynamic slippage. The results indicated that the asymmetric characteristics of streaming current (short-circuit current), streaming potential (open-circuit voltage), maximum power generation, maximum conversion efficiency, and flow rate were observed in conical nanopores under the forward pressure bias (tip-to-base direction) and reverse pressure bias (base-to-tip direction) once the nonequilibrium ion concentration polarization (ICP) became considerable. The rectification behaviors in the streaming current, maximum power, and maximum conversion efficiency were all shown to be opposite to those of the well-known ICR in conical nanopores. In other words, the reverse pressure bias revealed a higher EKEC performance than the forward pressure bias. It was concluded that the asymmetric behavior in EKEC is attributed to the asymmetric electrical resistance resulting from asymmetric ion depletion and ion enrichment. Particularly, it was found that the decrease in electrical resistance (i.e., the change in electrical resistance dominated by the ion enrichment) observed in the reverse pressure bias enhanced the maximum power and maximum conversion efficiency. The asymmetric EKEC characteristics became more significant with increasing slip length, surface charge density, cone angle, and pressure bias, especially at lower salt concentrations. The present findings provide useful information for the future development of EKEC in engineered membranes with asymmetric nanopores.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3