Abstract
Here, we propose an optical bistable device structure with a few layers of graphene oxide integrated in the metal-dielectric-metal based asymmetric nanocavity. Through the light confinement in the nanocavity, the third order nonlinear absorption of graphene oxide can be significantly enhanced, which experimentally delivers low-threshold optical bistability at the visible wavelength of 532 nm with only 267 KW/cm2 intensity. In addition, the switching threshold can be further reduced via increasing the graphene oxide thickness, hence paving a new way for achieving tunable optical bistable devices at visible light frequencies.
Funder
Science and Technology Commission of Shanghai Municipality
Zhangjiang National Innovation Demonstration Zone
National Key Research and Development program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献