Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation

Author:

Peruffo NicolaORCID,Parolin GiovanniORCID,Collini ElisabettaORCID,Corni Stefano,Mancin FabrizioORCID

Abstract

The ability to control the light–matter interaction in nanosystems is a major challenge in the field of innovative photonics applications. In this framework, plexcitons are promising hybrid light–matter states arising from the strong coupling between plasmonic and excitonic materials. However, strategies to precisely control the formation of plexcitons and to modulate the coupling between the plasmonic and molecular moieties are still poorly explored. In this work, the attention is focused on suspensions of hybrid nanosystems prepared by coupling cationic gold nanoparticles to tetraphenyl porphyrins in different aggregation states. The role of crucial parameters such as the dimension of nanoparticles, the pH of the solution, and the ratio between the nanoparticles and dye concentration was systematically investigated. A variety of structures and coupling regimes were obtained. The rationalization of the results allowed for the suggestion of important guidelines towards the control of plexcitonic systems.

Funder

University of Padua

Cineca

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference93 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3