Functional Devices from Bottom-Up Silicon Nanowires: A Review

Author:

Arjmand Tabassom,Legallais Maxime,Nguyen Thi Thu Thuy,Serre Pauline,Vallejo-Perez Monica,Morisot Fanny,Salem BassemORCID,Ternon CélineORCID

Abstract

This paper summarizes some of the essential aspects for the fabrication of functional devices from bottom-up silicon nanowires. In a first part, the different ways of exploiting nanowires in functional devices, from single nanowires to large assemblies of nanowires such as nanonets (two-dimensional arrays of randomly oriented nanowires), are briefly reviewed. Subsequently, the main properties of nanowires are discussed followed by those of nanonets that benefit from the large numbers of nanowires involved. After describing the main techniques used for the growth of nanowires, in the context of functional device fabrication, the different techniques used for nanowire manipulation are largely presented as they constitute one of the first fundamental steps that allows the nanowire positioning necessary to start the integration process. The advantages and disadvantages of each of these manipulation techniques are discussed. Then, the main families of nanowire-based transistors are presented; their most common integration routes and the electrical performance of the resulting devices are also presented and compared in order to highlight the relevance of these different geometries. Because they can be bottlenecks, the key technological elements necessary for the integration of silicon nanowires are detailed: the sintering technique, the importance of surface and interface engineering, and the key role of silicidation for good device performance. Finally the main application areas for these silicon nanowire devices are reviewed.

Funder

EU H2020 RIA

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference238 articles.

1. Nanowire-Based Sensors

2. Mechanical properties of ultrahigh-strength gold nanowires

3. Intégration 3D de Nanofils Si et SiGe Pour la Réalisation de Transistors Verticaux à Canalhttps://www.theses.fr/2012GRENT108

4. Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy;Lu;R. Soc. Chem.,2015

5. Curvature effect on the phonon thermal conductivity of dielectric nanowires

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3