Waves Propagating in Nano-Layered Phononic Crystals with Flexoelectricity, Microstructure, and Micro-Inertia Effects

Author:

Zhu JunORCID,Hu Puying,Chen Yudan,Chen Shaowei,Zhang Chuanzeng,Wang Yanzheng,Liu DongyingORCID

Abstract

The miniaturization of electronic devices is an important trend in the development of modern microelectronics information technology. However, when the size of the component or the material is reduced to the micro/nano scale, some size-dependent effects have to be taken into account. In this paper, the wave propagation in nano phononic crystals is investigated, which may have a potential application in the development of acoustic wave devices in the nanoscale. Based on the electric Gibbs free energy variational principle for nanosized dielectrics, a theoretical framework describing the size-dependent phenomenon was built, and the governing equation as well as the dispersion relation derived; the flexoelectric effect, microstructure, and micro-inertia effects are taken into consideration. To uncover the influence of these three size-dependent effects on the width and midfrequency of the band gaps of the waves propagating in periodically layered structures, some related numerical examples were shown. Comparing the present results with the results obtained with the classical elastic theory, we find that the coupled effects of flexoelectricity, microstructure, and micro-inertia have a significant or even dominant influence on the waves propagating in phononic crystals in the nanoscale. With increase in the size of the phononic crystal, the size effects gradually disappear and the corresponding dispersion curves approach the dispersion curves obtained with the conventional elastic theory, which verify the results obtained in this paper. Thus, when we study the waves propagating in phononic crystals in the micro/nano scale, the flexoelectric, microstructure, and micro-inertia effects should be considered.

Funder

National Natural Science Foundation of China

German Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3