In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution

Author:

Yang Pengfei,Li Fangxian,Wang Beihan,Niu Yanfei,Wei Jiangxiong,Yu Qijun

Abstract

Methods and materials that effectively remove heavy metals, such as lead and copper, from wastewater are urgently needed. In this study, steel slag, a low-cost byproduct of steel manufacturing, was utilized as a substrate material for carbon nanotube (CNT) growth by chemical vapor deposition (CVD) to produce a new kind of efficient and low-cost absorbent without any pretreatment. The synthesis parameters of the developed CNT–steel slag composite (SS@CNTs) were optimized, and its adsorption capacities for Pb(II) and Cu(II) were evaluated. The results showed that the optimal growth time, synthesis temperature and acetylene flow rate were 45 min, 600 °C and 200 sccm (standard cubic centimeter per minute), respectively. The SS@CNTs composite had a high adsorption capacity with a maximum removal amount of 427.26 mg·g−1 for Pb(II) and 132.79 mg·g−1 for Cu(II). The adsorption proceeded rapidly during the first 15 min of adsorption and reached equilibrium at approximately 90 min. The adsorption processes were in accordance with the isotherms of the Langmuir model and the pseudo-second-order model, while the adsorption thermodynamics results indicated that the removal for both metals was an endothermic and spontaneous process. This study showed that compared with other adsorbent materials, the SS@CNTs composite is an efficient and low-cost adsorbent for heavy metals such as lead and copper.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3