Dosimetric Performance of Poly(vinyl alcohol)/Silver Nanoparticles Hybrid Nanomaterials for Colorimetric Sensing of Gamma Radiation

Author:

Petisiwaveth PhasitORCID,Wanotayan RujiraORCID,Damrongkijudom Nuanpen,Ninlaphruk Sumalee,Kladsomboon SumanaORCID

Abstract

A colorimetric liquid sensor based on a poly(vinyl alcohol)/silver nanoparticle (PVA/AgNPs) hybrid nanomaterial was developed for gamma radiation in the range of 0–100 Gy. In this study, gamma rays (Cobalt-60 source) triggered the aggregation of AgNPs in a PVA/silver nitrate (AgNO3) hybrid solution. The color of this solution visibly changed from colorless to dark yellow. Absorption spectra of the PVA/AgNPs solution were analyzed by UV-Vis spectrophotometry in the range of 350–800 nm. Important parameters, such as pH and AgNO3 concentration were optimized. The accuracy, sensitivity, stability, and uncertainty of the sensor were investigated and compared to the reference standard dosimeter. Based on the spectrophotometric results, an excellent positive linear correlation (r = 0.998) between the absorption intensity and received dose was found. For the accuracy, the intra-class correlation coefficient (ICC) between the PVA/AgNPs sensor and the standard Fricke dosimeter was 0.998 (95%CI). The sensitivity of this sensor was 2.06 times higher than the standard dosimeter. The limit of detection of the liquid dosimeter was 13.4 Gy. Moreover, the overall uncertainty of this sensor was estimated at 4.962%, in the acceptable range for routine standard dosimeters (<6%). Based on its dosimetric performance, this new PVA/AgNPs sensor has potential for application as an alternative gamma sensor for routine dose monitoring in the range of 13.4–100 Gy.

Funder

Mahidol University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3