Characterizations of MWCNTs Nanofluids on the Effect of Surface Oxidative Treatments

Author:

Mohd Saidi Norshafiqah,Norizan Mohd NurazziORCID,Abdullah NorliORCID,Janudin Nurjahirah,Kasim Noor Azilah Mohd,Osman Mohd Junaedy,Mohamad Imran Syakir

Abstract

In this study, multi-walled carbon nanotubes (MWCNTs) were chemically modified using three acid treatment methods to introduce the surface oxygen functional group (SOFG). The presence of SOFG on the MWCNTs has been characterized by Fourier Transform Infrared (FTIR) spectroscopy. Morphology, structural and thermal properties were performed using Field Emission Scanning Electron Microscopy (FESEM), Raman spectroscopy, and Thermogravimetric analysis (TGA), respectively. The result shows that the modification with acid treatment significantly affects the degree of defects and surface group functionality of surface oxidized MWCNTs from method B. The preparation of nanofluids using MWCNTs produced from method B (MWCNT-MB) was prepared using two different parameters: with and without polyvinylpyrrolidone (PVP) as surfactant. The experiment was conducted by setting variable carbon particle concentration from 0.1 wt.% to 1.0 wt.%, and the amount of PVP is 10% of carbon particles at different temperatures (6 °C, 25 °C, 40 °C). Based on visual observation, the dispersion of carbon particles was enhanced by the presence of PVP as the stabilizing agent. The thermal conductivity performance of nanofluids revealed that the surface oxidized MWCNTs with PVP show enhanced thermal conductivity compared to the nanofluid containing MWCNTs without PVP. The improvement contributes to this in terms of stability and homogenization of nanoparticles. Hence the improved distribution of MWCNTs in water-based media improves thermal conductivity. These promising properties of MWCNTs in water-based fluids would enable the nanofluids to be used in heat transfer fluid and cooling applications.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3