Computational Framework of Magnetized MgO–Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings

Author:

Bhatti Muhammad MubashirORCID,Bég Osman Anwar,Abdelsalam Sara I.ORCID

Abstract

In this article, motivated by novel nanofluid solar energy coating systems, a mathematical model of hybrid magnesium oxide (MgO) and nickel (Ni) nanofluid magnetohydrodynamic (MHD) stagnation point flow impinging on a porous elastic stretching surface in a porous medium is developed. The hybrid nanofluid is electrically conducted, and a magnetic Reynolds number is sufficiently large enough to invoke an induced magnetic field. A Darcy model is adopted for the isotropic, homogenous porous medium. The boundary conditions account for the impacts of the velocity slip and thermal slip. Heat generation (source)/absorption (sink) and also viscous dissipation effects are included. The mathematical formulation has been performed with the help of similarity variables, and the resulting coupled nonlinear dimensionless ordinary differential equations have been solved numerically with the help of the shooting method. In order to test the validity of the current results and the convergence of the solutions, a numerical comparison with previously published results is included. Numerical results are plotted for the effect of emerging parameters on velocity, temperature, magnetic induction, skin friction, and Nusselt number. With an increment in nanoparticle volume fraction of both MgO and Ni nanoparticles, the temperature and thermal boundary layer thickness of the nanofluid are elevated. An increase in the porous medium parameter (Darcy number), velocity slip, and thermal Grashof number all enhance the induced magnetic field. Initial increments in the nanoparticle volume fraction for both MgO and Ni suppress the magnetic induction near the wall, although, subsequently, when further from the wall, this effect is reversed. Temperature is enhanced with heat generation, whereas it is depleted with heat absorption and thermal slip effects. Overall, excellent thermal enhancement is achieved by the hybrid nanofluid.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3