Synchronous Defect and Interface Engineering of NiMoO4 Nanowire Arrays for High-Performance Supercapacitors

Author:

Wang Pengcheng,Ding Xinying,Zhe Rongjie,Zhu Ting,Qing Chen,Liu Yingkai,Wang Hong-EnORCID

Abstract

Developing high-performance electrode materials is in high demand for the development of supercapacitors. Herein, defect and interface engineering has been simultaneously realized in NiMoO4 nanowire arrays (NWAs) using a simple sucrose coating followed by an annealing process. The resultant hierarchical oxygen-deficient NiMoO4@C NWAs (denoted as “NiMoO4−x@C”) are grown directly on conductive ferronickel foam substrates. This composite affords direct electrical contact with the substrates and directional electron transport, as well as short ionic diffusion pathways. Furthermore, the coating of the amorphous carbon shell and the introduction of oxygen vacancies effectively enhance the electrical conductivity of NiMoO4. In addition, the coated carbon layer improves the structural stability of the NiMoO4 in the whole charging and discharging process, significantly enhancing the cycling stability of the electrode. Consequently, the NiMoO4−x@C electrode delivers a high areal capacitance of 2.24 F cm−2 (1720 F g−1) at a current density of 1 mA cm−2 and superior cycling stability of 84.5% retention after 6000 cycles at 20 mA cm−2. Furthermore, an asymmetric super-capacitor device (ASC) has been constructed with NiMoO4−x@C as the positive electrode and activated carbon (AC) as the negative electrode. The as-assembled ASC device shows excellent electrochemical performance with a high energy density of 51.6 W h kg−1 at a power density of 203.95 W kg−1. Moreover, the NiMoO4//AC ASC device manifests remarkable cyclability with 84.5% of capacitance retention over 6000 cycles. The results demonstrate that the NiMoO4−x@C composite is a promising material for electrochemical energy storage. This work can give new insights on the design and development of novel functional electrode materials via defect and interface engineering through simple yet effective chemical routes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3