Formulation and In Vitro Efficacy Assessment of Teucrium marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol

Author:

Firoznezhad Mohammad,Castangia InesORCID,Tuberoso Carlo Ignazio GiovanniORCID,Cottiglia Filippo,Marongiu Francesca,Porceddu MarcoORCID,Usach IrisORCID,Escribano-Ferrer Elvira,Manca Maria LetiziaORCID,Manconi MariaORCID

Abstract

The extract of Teucrium marum L. (Lamiaceae) was obtained using the aerial parts of the plant, by means of a maceration process. Verbascoside, caffeic acids derivatives and flavonols were the main components contained in the extract as detected using high-performance liquid chromatography coupled with diode array detector (HPLC–DAD) as an analytical method. The extract was successfully incorporated into hyalurosomes, which were further enriched by adding a water cosolvent (glycerol) and a surfactant (Tween 80), thus obtaining glycerohyalurosomes. Liposomes, transfersomes and glycerosomes were prepared as well and used as comparisons. All vesicles were small, as the mean diameter was never higher than ~115 nm, thus ideal for topical application and stable on storage, probably thanks to the highly negative surface charge of the vesicles (~−33 mV). The cryo-TEM images confirmed the formation of close-packed, oligolamellar and multicompartment hyalurosomes and glycerohyalurosomes in which around 95% of the used extract was retained, confirming their ability to simultaneously load a wide range of molecules having different chemical natures. Moreover, the extract, when loaded in hyalurosomes and glycerohyalurosomes was able to counteract the damages induced in the fibroblasts by hydrogen peroxide to a better extent (viability~110%) than that loaded in the other vesicles (viability~100%), and effectively promoted their proliferation and migration ensuring the healing of the wound performed in a cell monolayer (scratch assay) during 48 h of experiment. Overall in vitro results confirmed the potential of glycerohyalurosomes as delivery systems for T. marum extract for the treatment of skin lesions connected with oxidative stress.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3