Abstract
This study synthesized ultra-fine nanometer-scaled ruthenium oxide (RuO2) quantum dots (QDs) on reduced graphene oxide (rGO) surface by a facile and rapid microwave-assisted hydrothermal approach. Benefiting from the synergistic effect of RuO2 and rGO, RuO2/rGO nanocomposite electrodes showed ultra-high capacitive performance. The impact of different RuO2 loadings in RuO2/rGO nanocomposite on their electrochemical performance was investigated by various characterizations. The composite RG-2 with 38 wt.% RuO2 loadings exhibited a specific capacitance of 1120 F g−1 at 1 A g−1. In addition, it has an excellent capacity retention rate of 84 % from 1A g−1 to 10 A g−1, and excellent cycling stability of 89% retention after 10,000 cycles, indicating fast ion-involved redox reactions on the nanocomposite surfaces. These results illustrate that RuO2/rGO composites prepared by this facile process can be an ideal candidate electrode for high-performance supercapacitors.
Funder
Shandong Provincial Natural Science Foundation,
Subject
General Materials Science,General Chemical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献