Synthesis and Nanoarchitectonics of Novel Squaraine Derivatives for Organic Photovoltaic Devices

Author:

Vuk Dragana,Radovanović-Perić Floren,Mandić VilkoORCID,Lovrinčević Vilma,Rath Thomas,Panžić IvanaORCID,Le-Cunff JeromeORCID

Abstract

Necessary advancements in the area of organic photovoltaic (OPV) devices include the upgrade of power conversion efficiencies (PCE) and stability. One answer to these demands lies in the research into new absorbers. Here, we focus on the development of new small molecule absorbers from the group of squaraines (SQs). These modular absorbers can be applied as donors in organic solar cells and have the ability to utilize a broad range of solar radiation if blended with suitable acceptors. In order to allow for the compatibility and favorable organization of donor and acceptor in the absorber layer, we intend to optimize the structure of the SQ by varying the groups attached to the squaric acid core. For that purpose, we accordingly developed a well-suited synthesis route. The novel alkyl- and benzyl-substituted aryl aminosquaraines were synthesized through an improved and eco-friendly procedure. Special emphasis was placed on optimizing the amination reaction to obtain initial precursors in the synthesis of squaraine, avoiding hitherto common catalytic processes. All SQ precursors and SQ products were completely described. The derived SQs were additionally characterized in thin-film configuration using cyclic voltammetry and UV-VIS spectroscopy and then processed to prepare self-standing bulk heterojunction (BHJ) thin films in conjunction with fullerene-based electron acceptors, which were characterized via profilometry. The comparison between SQ and BHJ solutions and thin films, using atomic force microscopy and UV-VIS spectroscopy, revealed differences in susceptibility for the organization and orientation of the constituting domains.

Funder

Croatian Science Foundation

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3