Tailoring Vibrational Signature and Functionality of 2D-Ordered Linear-Chain Carbon-Based Nanocarriers for Predictive Performance Enhancement of High-End Energetic Materials

Author:

Lukin AlexanderORCID,Gülseren OğuzORCID

Abstract

A recently proposed, game-changing transformative energetics concept based on predictive synthesis and preprocessing at the nanoscale is considered as a pathway towards the development of the next generation of high-end nanoenergetic materials for future multimode solid propulsion systems and deep-space-capable small satellites. As a new door for the further performance enhancement of transformative energetic materials, we propose the predictive ion-assisted pulse-plasma-driven assembling of the various carbon-based allotropes, used as catalytic nanoadditives, by the 2D-ordered linear-chained carbon-based multicavity nanomatrices serving as functionalizing nanocarriers of multiple heteroatom clusters. The vacant functional nanocavities of the nanomatrices available for heteroatom doping, including various catalytic nanoagents, promote heat transfer enhancement within the reaction zones. We propose the innovative concept of fine-tuning the vibrational signatures, functionalities and nanoarchitectures of the mentioned nanocarriers by using the surface acoustic waves-assisted micro/nanomanipulation by the pulse-plasma growth zone combined with the data-driven carbon nanomaterials genome approach, which is a deep materials informatics-based toolkit belonging to the fourth scientific paradigm. For the predictive manipulation by the micro- and mesoscale, and the spatial distribution of the induction and energy release domains in the reaction zones, we propose the activation of the functionalizing nanocarriers, assembled by the heteroatom clusters, through the earlier proposed plasma-acoustic coupling-based technique, as well as by the Teslaphoresis force field, thus inducing the directed self-assembly of the mentioned nanocarbon-based additives and nanocarriers.

Funder

Russian Foundation for Basic Research

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3