Wool-Based Carbon Fiber/MoS2 Composite Prepared by Low-Temperature Catalytic Hydrothermal Method and Its Application in the Field of Gas Sensors

Author:

Xia Yidan,Wu Zhaofeng,Qin Zhangjie,Chen Fengjuan,Lv Changwu,Zhang Min,Shaymurat Talgar,Duan Haiming

Abstract

Under the background of the Paris Agreement on reducing greenhouse gases, waste wools were converted into wool carbon fiber (WCF) and WCF–MoS2 composites by low-temperature catalytic hydrothermal carbonization. Their structures and gas-sensing performances were studied for the first time. Due to the existence of heterojunctions, the responses of the WCF–MoS2 composite to the five analytes were 3–400 times those of MoS2 and 2–11 times those of WCF. Interestingly, because of the N, P, and S elements contained in wools, the WCF prepared by the hydrothermal method was realized the doping of N, P, and S, which caused the sensing curves of WCF to have different shapes for different analytes. This characteristic was also well demonstrated by the WCF–MoS2 composite, which inspired us to realize the discriminative detection only by a single WCF–MoS2 sensor and image recognition technology. What’s more, the WCF–MoS2 composite also showed a high sensitivity, a high selectivity, and a rapid response to NH3. The response time and the recovery time to 3 ppm NH3 were about 16 and 5 s, respectively. The detection of limit of WCF–MoS2 for NH3 was 19.1 ppb. This work provides a new idea for the development of sensors and the resource utilization of wool waste.

Funder

Zhaofeng Wu

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3