Chromium(VI) Removal from Water by Lanthanum Hybrid Modified Activated Carbon Produced from Coconut Shells

Author:

Tolkou Athanasia K.ORCID,Trikalioti Soultana,Makrogianni Olina,Xanthopoulou Maria,Deliyanni Eleni A.ORCID,Katsoyiannis Ioannis A.,Kyzas George Z.ORCID

Abstract

Cr(VI) is considered to be the most hazardous and toxic oxidation state of chromium and hence the development of effective removal technologies, able to provide water with Cr(VI) below the drinking water limits (US EPA 100 μg/L, European Commission 50 μg/L, which will be reduced to 25 by 2036) is a very important issue in water treatment. This study aimed at examining the performance of activated carbon produced from coconut shells, modified by lanthanum chloride, for Cr(VI) removal from waters. The structure of the formed material (COC-AC-La) was characterized by the application of BET, FTIR and SEM techniques. The effect of the adsorbent’s dosage, pH value, contact time, initial Cr(VI) concentration and water matrix was examined with respect to Cr(VI) removal. The results indicated that the maximum Cr(VI) removal was observed at pH 5; 4 h contact time and 0.2 g/L of adsorbent’s dosage was adequate to reduce Cr(VI) from 100 μg/L to below 25 μg/L. Freundlich isotherm and pseudo-second order kinetic models fitted the experimental data sufficiently. The maximum adsorption capacity achieved was 6.3 μg/g at pH 5. At this pH value, the removal percentage of Cr(VI) reached 95% for an initial Cr(VI) concertation of 30 μg/L. At pH 7 the corresponding efficiency was roughly 60%, resulting in residual Cr(VI) concentrations below the anticipated drinking water limit of 25 μg/L of total chromium, when the initial Cr(VI) concentration was 50 μg/L. Consecutive adsorption and regeneration studies were conducted using 0.01 M of NaOH as an eluent to evaluate the reusability of the adsorbents, Results showed 20% decrease of adsorption capacity after 5 regeneration cycles of operation.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3