The Impacts of Native Forests and Forest Plantations on Water Supply in Chile

Author:

Alvarez-Garreton CamilaORCID,Lara Antonio,Boisier Juan PabloORCID,Galleguillos Mauricio

Abstract

Over the past 40 years, south-central Chile has experienced important land-use-induced land cover changes, with massive conversion from native forests (NF) to Pinus radiata D.Don and Eucalyptus spp. exotic forest plantations (FP). Several case studies have related this conversion to a reduction in water supply within small catchments (<100 ha). In this work, we explore the impacts of NF and FP on streamflow by using a large-sample catchment dataset recently developed for Chile. We select 25 large forested catchments (>20,000 ha) in south-central Chile (35° S–41° S), analyze their land cover and precipitation spatial distributions, and fit a regression model to quantify the influence of NF, FP, grassland (GRA) and shrubland (SHR) partitions on annual runoff. To assess potential effects of land cover changes on water supply, we use the fitted model (R2 = 0.84) in synthetic experiments where NF, GRA and SHR covers within the catchments are replaced by patches of FP. We show that annual runoff consistently decreases with increments of FP, although the magnitude of the change (ranging from 2.2% to 7.2% mean annual runoff decrease for 10,000 ha increment in FP) depends on several factors, including the initial land cover partition within the basin, the replaced land cover class, the area of the catchment, and the type of catchment (drier or humid). Finally, in the context of the mitigation strategies pledged in the Chilean NDC (Nationally Determined Contributions defined after the Paris Agreement), which include the afforestation of 100,000 ha (mainly native forest) by 2030, we quantify the impacts on water supply due to the afforestation of 100,000 ha with different combinations of NF and FP. We show that annual runoff is highly sensitive to the relative area of FP to NF: ratios of FP to NF areas of 10%, 50% and 90% would lead to 3%, −18% and −40% changes in mean annual runoff, respectively. Our results can be used in the discussion of public policies and decision-making involving forests and land cover changes, as they provide scientifically-based tools to quantify expected impacts on water resources. In particular, this knowledge is relevant for decision making regarding mitigation strategies pledged in the Chilean NDC.

Funder

Chilean Water Directorate (DGA)

Publisher

MDPI AG

Subject

Forestry

Reference40 articles.

1. Global Consequences of Land Use

2. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment

3. Mitigation Pathways Compatible With 1.5 °C in the Context of Sustainable Development;Rogelj,2018

4. Restoring natural forests is the best way to remove atmospheric carbon

5. IPCC Summary for Policymakers,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3