Discriminating Urban Forest Types from Sentinel-2A Image Data through Linear Spectral Mixture Analysis: A Case Study of Xuzhou, East China

Author:

Zhou XishengORCID,Li LongORCID,Chen Longqian,Liu Yunqiang,Cui Yifan,Zhang Yu,Zhang Ting

Abstract

Urban forests are an important component of the urban ecosystem. Urban forest types are a key piece of information required for monitoring the condition of an urban ecosystem. In this study, we propose an urban forest type discrimination method based on linear spectral mixture analysis (LSMA) and a support vector machine (SVM) in the case study of Xuzhou, east China. From 10-m Sentinel-2A imagery data, three different vegetation endmembers, namely broadleaved forest, coniferous forest, and low vegetation, and their abundances were extracted through LSMA. Using a combination of image spectra, topography, texture, and vegetation abundances, four SVM classification models were performed and compared to investigate the impact of these features on classification accuracy. With a particular interest in the role that vegetation abundances play in classification, we also compared SVM and other classifiers, i.e., random forest (RF), artificial neural network (ANN), and quick unbiased efficient statistical tree (QUEST). Results indicate that (1) the LSMA method can derive accurate vegetation abundances from Sentinel-2A image data, and the root-mean-square error (RMSE) was 0.019; (2) the classification accuracies of the four SVM models were improved after adding topographic features, textural features, and vegetation abundances one after the other; (3) the SVM produced higher classification accuracies than the other three classifiers when identical classification features were used; and (4) vegetation endmember abundances improved classification accuracy regardless of which classifier was used. It is concluded that Sentinel-2A image data has a strong capability to discriminate urban forest types in spectrally heterogeneous urban areas, and that vegetation abundances derived from LSMA can enhance such discrimination.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3