Development of a Mixed-Effects Individual-Tree Basal Area Increment Model for Oaks (Quercus spp.) Considering Forest Structural Diversity

Author:

Wang Wenwen,Chen Xinyun,Zeng WeishengORCID,Wang Jianjun,Meng JinghuiORCID

Abstract

In the context of uneven-aged mixed-species forest management, an individual-tree basal area increment model considering forest structural diversity was developed for oaks (Quercus spp.) using data collected from 11,860 observations in 845 sample plots from the 7th (2004), 8th (2009), and 9th (2014) Chinese National Forest Inventory in Hunan Province, south-central China. Since the data was longitudinal and had a nested structure, we used a linear mixed-effects approach to construct the model. We also used the variance function and an autocorrelation structure to describe within-plot heteroscedasticity and autocorrelation. Finally, the optimal mixed-effects model was determined based on the Akaike information criterion (AIC), Bayesian information criterion (BIC), log-likelihood (Loglik) and the likelihood ratio test (LRT). The results indicate that the reciprocal transformation of initial diameter at breast height (1/DBH), relative density index (RD), number of trees per hectare (NT), elevation (EL) and Gini coefficient (GC) had a significant impact on the individual-tree basal area increment. In comparison to the basic model developed using least absolute shrinkage and selection operator (LASSO) regression, the mixed-effects model performance was greatly improved. In addition, we observed that the heteroscedasticity was successfully removed by the exponent function and autocorrelation was significantly corrected by AR(1). Our final model also indicated that forest structural diversity significantly affected tree growth and hence should not be neglected. We hope that our final model will contribute to the scientific management of oak-dominated forests.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3