Reversible Growth-Arrest of a Spontaneously-Derived Human MSC-Like Cell Line

Author:

Melzer Catharina,Jacobs RolandORCID,Dittmar ThomasORCID,Pich Andreas,von der Ohe Juliane,Yang Yuanyuan,Hass RalfORCID

Abstract

Life cycle limitation hampers the production of high amounts of primary human mesenchymal stroma-/stem-like cells (MSC) and limits cell source reproducibility for clinical applications. The characterization of permanently growing MSC544 revealed some differentiation capacity and the simultaneous presence of known MSC markers CD73, CD90, and CD105 even after continuous long-term culture for more than one year and 32 passages. The expression of CD13, CD29, CD44, and CD166 were identified as further surface proteins, all of which were also simultaneously detectable in various other types of primary MSC populations derived from the umbilical cord, bone marrow, and placenta suggesting MSC-like properties in the cell line. Proliferating steady state MSC544 exhibited immune-modulatory activity similar to a subpopulation of long-term growth-inhibited MSC544 after 189d of continuous culture in confluency. This confluent connective cell layer with fibroblast-like morphology can spontaneously contract and the generated space is subsequently occupied by new cells with regained proliferative capacity. Accordingly, the confluent and senescence-associated beta-galactosidase-positive MSC544 culture with about 95% G0/G1 growth-arrest resumed re-entry into the proliferative cell cycle within 3d after sub-confluent culture. The MSC544 cells remained viable during confluency and throughout this transition which was accompanied by marked changes in the release of proteins. Thus, expression of proliferation-associated genes was down-modulated in confluent MSC544 and re-expressed following sub-confluent conditions whilst telomerase (hTERT) transcripts remained detectable at similar levels in both, confluent growth-arrested and proliferating MSC544. Together with the capability of connective cell layer formation for potential therapeutic approaches, MSC544 provide a long term reproducible human cell source with constant properties.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3