Acute Hyperglycemia Aggravates Lung Injury via Activation of the SGK1–NKCC1 Pathway

Author:

Wu Chin-Pyng,Huang Kun-Lun,Peng Chung-KanORCID,Lan Chou-Chin

Abstract

Acute lung injury (ALI) is characterized by severe hypoxemia and has significantly high mortality rates. Acute hyperglycemia occurs in patients with conditions such as sepsis or trauma, among others, and it results in aggravated inflammation and induces damage in patients with ALI. Regulation of alveolar fluid is essential for the development and resolution of pulmonary edema in lung injury. Pulmonary sodium-potassium-chloride co-transporter 1 (NKCC1) regulates the net influx of ions and water into alveolar cells. The activation of with-no-lysine kinase 4 (WNK4), STE20/SPS1-related proline/alanine rich kinase (SPAK) and the NKCC1 pathway lead to an increase in the expression of NKCC1 and aggravation of ALI. Moreover, hyperglycemia is known to induce NKCC1 expression via the activation of the serum-glucocorticoid kinase 1 (SGK1)–NKCC1 pathway. We aim to evaluate the influence of acute hyperglycemia on the SGK1–NKCC1 pathway in ALI. ALI was induced using a high tidal volume for four hours in a rat model. Acute hyperglycemia was induced by injection with 0.5 mL of 40% glucose solution followed by continuous infusion at 2 mL/h. The animals were divided into sham, sham+ hyperglycemia, ALI, ALI + hyperglycemia, ALI + inhaled bumetanide (NKCC1 inhibitor) pretreatment, ALI + hyperglycemia + inhalational bumetanide pretreatment, and ALI + hyperglycemia + post-ALI inhalational bumetanide groups. Severe lung injury along with pulmonary edema, alveolar protein leakage, and lung inflammation was observed in ALI with hyperglycemia than in ALI without hyperglycemia. This was concurrent with the higher expression of pro-inflammatory cytokines, infiltration of neutrophils and alveolar macrophages (AM) 1, and NKCC1 expression. Inhalational NKCC1 inhibitor significantly inhibited the SGK1–NKCC1, and WNK4–SPAK–NKCC1 pathways. Additionally, it reduced pulmonary edema, inflammation, levels of pro-inflammatory cytokines, neutrophils and AM1 and increased AM2. Therefore, acute hyperglycemia aggravates lung injury via the further activation of the SGK1–NKCC1 pathway. The NKCC1 inhibitor can effectively attenuate lung injury aggravated by acute hyperglycemia.

Funder

Taipei Tzu Chi Hospital

Landseed Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3