Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献