Estimation Based on Chirp Modulation for Desired and Interference Power and Channel Occupancy Ratio in LoRa

Author:

Takyu OsamuORCID,Kobayashi Gaku,Adachi KoichiORCID,Ohta Mai,Fujii TakeoORCID

Abstract

In terms of low power consumption and long-range communication—low-power wide-area networks (LPWAN) are suitable for wireless sensor networks. Long-range (LoRa) wireless communication is one of the standards of LPWAN. LoRa shares common frequency spectrum bands with both multiple transmitters, which are the sensors in the LoRa system (and those in the other system). Therefore, co-channel interference (CCI) degrades the packet delivery rate. To avoid CCI, the CCI power and the occurrence probability of CCI in the target channel are estimated, then the sensor decides whether to use the channel and where the occurrence probability of CCI is defined as the channel occupancy ratio (COR). If a large signal power is obtained at the receiver, the received signal can be demodulated because of the capture effect. The desired signal power must also be estimated for the capture effect. In this study, we propose an estimation scheme based on chirp modulation of LoRa under spectrum sharing among other systems. The proposed scheme estimates the desired signal power, CCI power, and COR. From the computer simulation results, we clarify the advantages of the proposed scheme in terms of estimation accuracy and packet delivery rate.

Funder

The Ministry of Internal Affairs and Communications in Japan under the project name Strategic Information and Communications R&D Promotion Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3