Abstract
IEEE 802.11ah, known as Wi-Fi HaLow, is envisioned for long-range and low-power communication. It is sub-1 GHz technology designed for massive Internet of Things (IoT) and machine-to-machine devices. It aims to overcome the IoT challenges, such as providing connectivity to massive power-constrained devices distributed over a large geographical area. To accomplish this objective, IEEE 802.11ah introduces several unique physical and medium access control layer (MAC) features. In recent years, the MAC features of IEEE 802.11ah, including restricted access window, authentication (e.g., centralized and distributed) and association, relay and sectorization, target wake-up time, and traffic indication map, have been intensively investigated from various aspects to improve resource allocation and enhance the network performance in terms of device association time, throughput, delay, and energy consumption. This survey paper presents an in-depth assessment and analysis of these MAC features along with current solutions, their potentials, and key challenges, exposing how to use these novel features to meet the rigorous IoT standards.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献