Facial Expression Recognition Based on Random Forest and Convolutional Neural Network

Author:

Wang YingyingORCID,Li Yibin,Song Yong,Rong XuewenORCID

Abstract

As an important part of emotion research, facial expression recognition is a necessary requirement in human–machine interface. Generally, a face expression recognition system includes face detection, feature extraction, and feature classification. Although great success has been made by the traditional machine learning methods, most of them have complex computational problems and lack the ability to extract comprehensive and abstract features. Deep learning-based methods can realize a higher recognition rate for facial expressions, but a large number of training samples and tuning parameters are needed, and the hardware requirement is very high. For the above problems, this paper proposes a method combining features that extracted by the convolutional neural network (CNN) with the C4.5 classifier to recognize facial expressions, which not only can address the incompleteness of handcrafted features but also can avoid the high hardware configuration in the deep learning model. Considering some problems of overfitting and weak generalization ability of the single classifier, random forest is applied in this paper. Meanwhile, this paper makes some improvements for C4.5 classifier and the traditional random forest in the process of experiments. A large number of experiments have proved the effectiveness and feasibility of the proposed method.

Publisher

MDPI AG

Subject

Information Systems

Reference38 articles.

1. Communication without words;Mehrabian;Psychol. Today,1968

2. Expression of the emotions in man and animals;Darwin;Portable Darwin,2003

3. Constants across cultures in the face and emotion.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3