Credit Scoring Using Machine Learning by Combing Social Network Information: Evidence from Peer-to-Peer Lending

Author:

Niu Beibei,Ren Jinzheng,Li Xiaotao

Abstract

Financial institutions use credit scoring to evaluate potential loan default risks. However, insufficient credit information limits the peer-to-peer (P2P) lending platform’s capacity to build effective credit scoring. In recent years, many types of data are used for credit scoring to compensate for the lack of credit history data. Whether social network information can be used to strengthen financial institutions’ predictive power has received much attention in the industry and academia. The aim of this study is to test the reliability of social network information in predicting loan default. We extract borrowers’ social network information from mobile phones and then use logistic regression to test the relationship between social network information and loan default. Three machine learning algorithms—random forest, AdaBoost, and LightGBM—were constructed to demonstrate the predictive performance of social network information. The logistic regression results show that there is a statistically significant correlation between social network information and loan default. The machine learning algorithm results show that social network information can improve loan default prediction performance significantly. The experiment results suggest that social network information is valuable for credit scoring.

Funder

National Natural Science Foundation of China

Beijing Social Science Fund

Publisher

MDPI AG

Subject

Information Systems

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3