Abstract
Ride-sharing (RS) plays an important role in saving energy and alleviating traffic pressure. The vehicles in the demand-responsive feeder transit services (DRT) are generally not ride-sharing cars. Therefore, we proposed an optimal DRT model based on the ride-sharing car, which aimed at assigning a set of vehicles, starting at origin locations and ending at destination locations with their service time windows, to transport passengers of all demand points to the transportation hub (i.e., railway, metro, airport, etc.). The proposed model offered an integrated operation of pedestrian guidance (from unvisited demand points to visited ones) and transit routing (from visited ones to the transportation hub). The objective was to simultaneously minimize weighted passenger walking and riding time. A two-stage heuristic algorithm based on a genetic algorithm (GA) was adopted to solve the problem. The methodology was tested with a case study in Chongqing City, China. The results showed that the model could select optimal pick-up locations and also determine the best pedestrian and route plan. Validation and analysis were also carried out to assess the effect of maximum walking distance and the number of share cars on the model performance, and the difference in quality between the heuristic and optimal solution was also compared.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献