Synergistic Effect of Treatment with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Lipopolysaccharide on the Inflammatory Response of Porcine Pulmonary Microvascular Endothelial Cells

Author:

Yao Xinyue1,Dai Wanwan2,Yang Siyu1,Wang Zhaoli1,Zhang Qian1,Meng Qinghui3,Zhang Tao1ORCID

Affiliation:

1. Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China

2. College of Veterinary Medicine, Shanxi Agriculture University, Taigu 030801, China

3. Beijing Milu Ecological Research Center, Beijing Research Institute of Science and Technology, Beijing 100076, China

Abstract

The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) often causes secondary bacterial infection in piglets, resulting in inflammatory lung injury and leading to high mortality rates and significant economic losses in the pig industry. Microvascular endothelial cells (MVECs) play a crucial role in the inflammatory response. Previous studies have shown that HP-PRRSV can infect porcine pulmonary MVECs and damage the endothelial glycocalyx. To further understand the role of pulmonary MVECs in the pathogenesis of HP-PRRSV and its secondary bacterial infection, in this study, cultured porcine pulmonary MVECs were stimulated with a HP-PRRSV HN strain and lipopolysaccharide (LPS). The changes in gene expression profiles were analyzed through transcriptome sequencing, and the differentially expressed genes were verified using qRT-PCR, Western blot, and ELISA. Furthermore, the effects on endothelial barrier function and regulation of neutrophil trans-endothelial migration were detected using the Transwell model. HP-PRRSV primarily induced differential expression of numerous genes associated with immune response, including IFIT2, IFIT3, VCAM1, ITGB4, and CCL5, whereas LPS triggered an inflammatory response involving IL6, IL16, CXCL8, CXCL14, and ITGA7. Compared to the individual effect of LPS, when given after HN-induced stimulation, it caused a greater number of changes in inflammatory molecules, such as VCAM1, IL1A, IL6, IL16, IL17D, CCL5, ITGAV, IGTB8, and TNFAIP3A, a more significant reduction in transendothelial electrical resistance, and higher increase in neutrophil transendothelial migration. In summary, these results suggest a synergistic effect of HP-PRRSV and LPS on the inflammatory response of porcine pulmonary MVECs. This study provides insights into the mechanism of severe lung injury caused by secondary bacterial infection following HP-PRRSV infection from the perspective of MVECs, emphasizing the vital role of pulmonary MVECs in HP-PRRSV infection.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3