Abstract
Crystallographic relationships between α- and β-phases resulting from phase transformations, which took place during the continuous water quenching (WQ), air cooling (AC) and furnace cooling (FC) of a Ti6Al4V plates solution treated at 1065 °C, were investigated by methods of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). WQ, AC and FC resulted in typical martensite, basket-weave and parallel-plate Widmanstatten structures, respectively. The experimental distribution of α/β-misorientations deviated from BOR at set discrete angles close to 22, 30, 35 and 43°. The experimental spectra of angles were confirmed by theoretical calculations of the possible misorientations between the α and β phases through the βo→α→βII –transformation path based on Burgers orientation relationship (BOR). Joint analysis of the experimental data and theoretical calculations revealed that the secondary βII-phase was precipitated according to the sequence βo→α→βII during continuous cooling from the single-phase β-region. Similar spectra for α/β-phase misorientations for all investigated cooling rates acknowledged the similar transformation mechanisms and dominant shear component of the phase transformations.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献