Abstract
The nano-biocomposite electrodes composed of carbon nanotube (CNT), polypyrrole (PPy), and E. coli-bacteria were investigated for electrochemical supercapacitors. For this purpose, PPy/CNT–E. coli was successfully synthesized through oxidative polymerization. The PPy/CNT–E. coli electrode exhibited a high specific capacitance of 173 F∙g−1 at the current density of 0.2 A∙g−1, which is much higher than that (37 F∙g−1) of CNT. Furthermore, it displayed sufficient stability after 1000 charge/discharge cycles. The CNT, PPy/CNT, and PPy/CNT–E. coli composites were characterized by x-ray diffraction, scanning electron microscopy, and surface analyzer (Brunauer–Emmett–Teller, BET). In particular, the pyrrole monomers were easily adsorbed and polymerized on the surface of CNT materials, as well as E. coli bacteria enhanced the surface area and porous structure of the PPy/CNT–E. coli composite electrode resulting in high performance of devices.
Funder
Ministry of Trade, Industry and Energy
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献