Energy-Saving One-Step Pre-Treatment Using an Activated Sodium Percarbonate System and Its Bleaching Mechanism for Cotton Fabric

Author:

Li QingORCID,Lu Run,Liang Yan,Gao Kang,Jiang Huiyu

Abstract

The traditional pre-treatment of cotton fabric hardly meets the requirement of low carbon emissions due to its large energy consumption and wastewater discharge. In this study, a low-temperature and near-neutral strategy was designed by establishing a tetraacetylethylenediamine (TAED)-activated sodium percarbonate (SPC) system. First, the effects of SPC concentration, temperature and duration on the whiteness index (WI) and capillary effect of cotton fabrics were investigated. Particularly, excess SPC’s ability to create an additional bleaching effect was studied. The optimized activated pre-treatment was compared with the traditional pre-treatment in terms of the bleaching effect and energy consumption. Further, the degradation of morin, which is one of the natural pigments in cotton, was carried out in a homogeneous TAED/SPC system to reveal the bleaching mechanism. Lastly, the application performance of the treated cotton was evaluated by characterizing the dyeability, mechanical properties, morphology, etc. The research results showed that temperature had a significant influence on both the WI and capillary effect, followed by the SPC concentration and duration. The WI was positively correlated with the SPC concentration, but excess SPC could not produce an obvious additional effect. The WI of the fabric increased by 67.6% after the optimized activated bleaching using 10 mmol/L SPC and 15 mmol/L TAED at 70 °C for 30 min. Compared with the traditional process performed at 95 °C for 45 min, the activated process produced approximately 39.3% energy savings. Research on the bleaching mechanism indicated that the reactive species that participated in degrading the morin were the hydroxyl radical and superoxide radical, and the contribution degree of the former was larger than that of the latter. Two degradation components with molecular weights of 180 and 154 were detected using mass spectroscopy. Based on this, the bleaching mechanism of the TAED/SPC system was proposed. Moreover, the fabric after the activated pre-treatment had a suitable dyeability and strength, a lower wax residual and a smoother and cleaner fiber surface. The encouraging results showed that TAED/SPC is a promising bleaching system that is conducive to the sustainable advance of the textile industry.

Funder

Opening Project of Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3