Synergistic Effect of Cerium Oxide for Improving the Fire-Retardant, Mechanical and Ultraviolet-Blocking Properties of EVA/Magnesium Hydroxide Composites

Author:

Hobson JoseORCID,Yin Guang-ZhongORCID,Yu Xiaoli,Zhou Xiaodong,Prolongo Silvia GonzalezORCID,Ao XiangORCID,Wang De-YiORCID

Abstract

Rare earth oxide particles have received important attention in recent years, and due to the wide diversity of promising applications, the need for this kind of material is predicted to expand as the requirements to use the current resources become more demanding. In this work, cerium oxide (CeO2) was introduced into ethylene-vinyl acetate (EVA)/magnesium hydroxide (MDH) composites for enhancing the flame retardancy, mechanical properties and anti-ultraviolet aging performance. The target EVA/MDH/CeO2 composites were prepared by extrusion and injection molding, and the effects of the addition of the CeO2 were explored by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), limiting oxygen index (LOI), UL-94, cone calorimetry test, and anti-ultraviolet aging test. Typically, the incorporation of the CeO2 allows a significant increase of the elongation at break and Young’s modulus compared with EVA/MDH by 52.25% and 6.85%, respectively. The pHRR remarkably decreased from 490.6 kW/m2 for EVA/MDH to 354.4 kW/m2 for EVA/MDH/CeO2 composite. It was found that the CeO2 presents excellent synergism with MDH in the composites for the anti-UV properties in terms of mechanical properties preservation. Notably, the combination of CeO2 with MDH is a novel and simple method to improve the filler–polymer interaction and dispersion, which resulted in the improvement of the mechanical properties, flame retardancy and the anti-ultraviolet aging performance of the composites.

Funder

Inner Mongolia Autonomous Region Science and Technology Program, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3