Analysis of Electromagnetic Characteristics of Copper-Steel Composite Quadrupole Rail

Author:

Li TengdaORCID,Feng Gang,Du Chong,Zhang PengxiangORCID

Abstract

The ablation and wear of the four-rail electromagnetic launcher during the working process will aggravate the damage of the armature and rail, and greatly affect the service life of the launcher. To effectively alleviate rail damage, this paper applies the copper-steel composite rail to the four-rail electromagnetic launcher and proposes a new four-rail electromagnetic launcher. Based on the quadrupole magnetic field theory, the physical model of the new four-rail electromagnetic launcher is established, and the electromagnetic characteristics of the ordinary and new launchers are compared and analyzed using the finite element method. On this basis, the influence of composite layer parameters on the electromagnetic characteristics of copper-steel composite quadrupole rail is explored. The study found that the new four-rail electromagnetic launcher can provide a better launch magnetic field environment for smart loads, and the current distribution of the armature and the rail contact surface is more uniform, which can effectively improve the contact condition between the armature and the rail. The composite layer parameters of copper-based composite rail will have a certain impact on electromagnetic characteristics, and copper-steel composite rail of appropriate proportions can be selected according to different needs. The model proposed in this paper has a certain degree of scientificity and rationality.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3