Genome-Wide Identification of WOX Gene Family and Expression Analysis during Rejuvenational Rhizogenesis in Walnut (Juglans regia L.)

Author:

Chang Yingying,Song Xiaobo,Zhang Qixiang,Liu Hao,Bai YongchaoORCID,Lei Xiashuo,Pei Dong

Abstract

Rejuvenation is an efficient approach used in the cuttings of trees and horticultural crops, to improve their rooting ability, especially in difficult-to-root trees. WOX gene family members are involved in cell-fate transformation through balancing the maintenance and proliferation of the stem cells. However, there are no reports about the WOX gene family in Walnut (Juglans regia L.) and its relationship between rejuvenation and adventitious roots formation (ARF). Here, a genome-wide identification of JrWOX genes and their physical and chemical properties, phylogeny, and expression profiles in different organs and during rejuvenation-induced ARF is reported. The phenotype and histology characteristics of mature and rejuvenated cuttings (Mc and Rc) are also observed. In this study, 12 genes were identified and clustered into three groups based on phylogenetics, special domains, and conserved motifs. The gene structures and conserved motifs were relatively conserved, while the 12 sequences of the JrWOXs domain were diversified. Gene expression in root, stem, leaf, female flower, immature fruit, and zygotic embryo revealed that the expression levels of JrWOX4a, JrWOX4b, JrWOX5, JrWOX11, and JrWOX13 in the root were significantly higher than those of other JrWOXs, while only the expression of JrWOX11 was exclusive to the root organ. Additionally, rejuvenation treatment significantly induced almost all JrWOX genes, except JrWOX4a, JrWOX4b, and JrWOX13 (Rc 0 vs. Mc 0). During the ARF process, the transcripts of JrWOX11 and JrWOX5 were consecutively increased on a significance level; in contrast, the transcription levels of the other JrWOXs decreased or changed insignificantly. The phenotype and histology observation indicate that rejuvenation treatment made the base of the stem expand and reduced the thickness and density of sclerenchyma between the cortex and phloem. This might provide the conditions for the formation of new meristem niches. The results provided insight into the JrWOX genes’ general characteristics and their roles in rejuvenation-induced ARF.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3