Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests

Author:

López-Serrano Pablito M.,Cárdenas Domínguez José Luis,Corral-Rivas José JavierORCID,Jiménez Enrique,López-Sánchez Carlos A.ORCID,Vega-Nieva Daniel José

Abstract

An accurate estimation of forests’ aboveground biomass (AGB) is required because of its relevance to the carbon cycle, and because of its economic and ecological importance. The selection of appropriate variables from satellite information and physical variables is important for precise AGB prediction mapping. Because of the complex relationships for AGB prediction, non-parametric machine-learning techniques represent potentially useful techniques for AGB estimation, but their use and comparison in forest remote-sensing applications is still relatively limited. The objective of the present study was to evaluate the performance of automatic learning techniques, support vector regression (SVR) and random forest (RF), to predict the observed AGB (from 318 permanent sampling plots) from the Landsat 8 Landsat 8 Operational Land Imager (OLI) sensor, spectral indexes, texture indexes and physical variables the Sierra Madre Occidental in Mexico. The result showed that the best SVR model explained 80% of the total variance (root mean square error (RMSE) = 8.20 Mg ha−1). The variables that best predicted AGB, in order of importance, were the bands that belong to the region of red and near and middle infrared, and the average temperature. The results show that the SVR technique has a good potential for the estimation of the AGB and that the selection of the model hyperparameters has important implications for optimizing the goodness of fit.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3