Career Success in University Graduates: Evidence from an Ecuadorian Study in Los Ríos Province

Author:

Pico-Saltos Roberto,Bravo-Montero LadyORCID,Montalván-Burbano NéstorORCID,Garzás Javier,Redchuk Andrés

Abstract

Career success and its evaluation in university graduates generate growing interest in the academy when evaluating the university according to its mission and social mandate. Therefore, monitoring university graduates is essential in measuring career success in the State Technical University of Quevedo (UTEQ, acronym in Spanish). In this sense, this article aims to identify the predictive career success factors through survey application, development of two mathematical functions, and Weka’s classification learning algorithms application for objective career success levels determination in UTEQ university graduates. Researchers established a methodology that considers: (i) sample and data analysis, (ii) career success variables, (iii) variables selection, (iv) mathematical functions construction, and (v) classification models. The methodology shows the integration of the objective and subjective factors by approximating linear functions, which experts validated. Therefore, career success can classify university graduates into three levels: (1) not successful, (2) moderately successful, and (3) successful. Results showed that from 548 university graduates sample, 307 are men and 241 women. In addition, Pearson correlation coefficient between Objective Career Success (OCS) and Subjective Career Success (SCS) was 0.297, reason why construction models were separately using Weka’s classification learning algorithms, which allow OCS and SCS levels classification. Between these algorithms are the following: Logistic Model Tree (LMT), J48 pruned tree, Random Forest Tree (RF), and Random Tree (RT). LMT algorithm is the best suited to the predictive objective career success factors, because it presented 76.09% of instances correctly classified, which means 417 of the 548 UTEQ university graduates correctly classified according to OCS levels. In SCS model, RF algorithm shows the best results, with 94.59% of instances correctly classified (518 university graduates). Finally, 67.1% of UTEQ university graduates are considered successful, showing compliance with the university’s mission.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3