AI Augmented Approach to Identify Shared Ideas from Large Format Public Consultation

Author:

Weng Min-HsienORCID,Wu ShaoqunORCID,Dyer Mark

Abstract

Public data, contributed by citizens, stakeholders and other potentially affected parties, are becoming increasingly used to collect the shared ideas of a wider community. Having collected large quantities of text data from public consultation, the challenge is often how to interpret the dataset without resorting to lengthy time-consuming manual analysis. One approach gaining ground is the use of Natural Language Processing (NLP) technologies. Based on machine learning technology applied to analysis of human natural languages, NLP provides the opportunity to automate data analysis for large volumes of texts at a scale that would be virtually impossible to analyse manually. Using NLP toolkits, this paper presents a novel approach for identifying and visualising shared ideas from large format public consultation. The approach analyses grammatical structures of public texts to discover shared ideas from sentences comprising subject + verb + object and verb + object that express public options. In particular, the shared ideas are identified by extracting noun, verb, adjective phrases and clauses from subjects and objects, which are then categorised by urban infrastructure categories and terms. The results are visualised in a hierarchy chart and a word tree using cascade and tree views. The approach is illustrated using data collected from a public consultation exercise called “Share an Idea” undertaken in Christchurch, New Zealand, after the 2011 earthquake. The approach has the potential to upscale public participation to identify shared design values and associated qualities for a wide range of public initiatives including urban planning.

Funder

BRANZ

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference54 articles.

1. eParticipation in Europe: Current state and practical recommendations;Tambouris,2013

2. Quality of Life Survey 2018: Topline Report, A Report Prepared on Behalf of Auckland Council, Wellington City Council, Christchurch City Council, and Dunedin City Council,2018

3. Twitter as arena for the authentic outsider: exploring the social media campaigns of Trump and Clinton in the 2016 US presidential election

4. Earthquake shakes Twitter users

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3