Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation

Author:

Moesl BirgitORCID,Schaffernak HaraldORCID,Vorraber WolfgangORCID,Braunstingl ReinhardORCID,Koglbauer Ioana VictoriaORCID

Abstract

Mid-air collision is one of the top safety risks in general aviation. This study addresses the description and experimental assessment of multimodal Augmented Reality (AR) applications for training of traffic procedures in accordance with Visual Flight Rules (VFR). AR has the potential to complement the conventional flight instruction by bridging the gap between theory and practice, and by releasing students’ time and performance pressure associated with a limited simulator time. However, it is critical to assess the impact of AR in the specific domain and to identify any potential negative learning transfer. Multimodal AR applications were developed to address various areas of training: guidance and feedback for the correct scanning pattern, estimation if an encountering traffic is on collision course and application of the relevant rules. The AR applications also provided performance feedback for collision detection, avoidance and priority decisions. The experimental assessment was conducted with 59 trainees (28 women, 31 men) assigned to an experimental group (AR training) and a control group (simulator training). The results of tests without AR in the flight simulator show that the group that trained with AR obtained similar levels of performance like the control group. There was no negative training effect of AR on trainees’ performance, workload, situational awareness, emotion nor motivation. After training the tasks were perceived as less challenging, the accuracy of collision detection has improved, and the trainees reported less intense negative emotions and fear of failure. Furthermore, a scanning pattern test in AR showed that the AR training group performed the scanning pattern significantly better than the control group. In addition, there was a significant gender effect on emotion, motivation and preferences for AR features, but not on performance. Women liked the voice interaction with AR and the compass hologram more than men. Men liked the traffic holograms and the AR projection field more than women. These results are important because they provide experimental evidence for the benefits of multimodal AR applications that could be used complementary to the flight simulator training.

Funder

Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3